Dynamical system with ergodic partitions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS

This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...

متن کامل

Ergodic Theory and Dynamical Systems

We construct templates for geodesic flows on an infinite family of Hecke triangle groups. Our results generalize those of E. Ghys [Knots and dynamics. Proc. Int. Congress of Mathematicians. Vol. 1. International Congress of Mathematicians, Zürich, 2007], who constructed a template for the modular flow in the complement of the trefoil knot in S3. A significant difficulty that arises in any attem...

متن کامل

Ergodic Theory and Dynamical Systems

To any positive contraction Q on `2(W ), there is associated a determinantal probability measure PQ on 2W , where W is a denumerable set. Let 0 be a countable sofic finitely generated group and G = (0, E) be a Cayley graph of 0. We show that if Q1 and Q2 are two 0-equivariant positive contractions on `2(0) or on `2(E) with Q1 ≤ Q2, then there exists a 0-invariant monotone coupling of the corres...

متن کامل

Ergodic parameters and dynamical complexity.

Using a cocycle formulation, old and new ergodic parameters beyond the Lyapunov exponent are rigorously characterized. Dynamical Renyi entropies and fluctuations of the local expansion rate are related by a generalization of the Pesin formula. How the ergodic parameters may be used to characterize the complexity of dynamical systems is illustrated by some examples: clustering and synchronizatio...

متن کامل

Ergodic Theory and Dynamical Systems

Abért and Weiss have shown that the Bernoulli shift s0 of a countably infinite group 0 is weakly contained in any free measure preserving action a of 0. Proving a conjecture of Ioana, we establish a strong version of this result by showing that s0 × a is weakly equivalent to a. Using random Bernoulli shifts introduced by Abért, Glasner, and Virag, we generalize this to non-free actions, replaci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1971

ISSN: 0386-2194

DOI: 10.3792/pja/1195520059